A Hybrid Collocation Method for Volterra Integral Equations with Weakly Singular Kernels
نویسندگان
چکیده
منابع مشابه
COLLOCATION METHOD FOR FREDHOLM-VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY KERNELS
In this paper it is shown that the use of uniform meshes leads to optimal convergence rates provided that the analytical solutions of a particular class of Fredholm-Volterra integral equations (FVIEs) are smooth.
متن کاملA Hybrid Collocation Method for Volterra Integral Equations with Weakly Singular Kernels
The commonly used graded piecewise polynomial collocation method for weakly singular Volterra integral equations may cause serious round-off error problems due to its use of extremely nonuniform partitions and the sensitivity of such time-dependent equations to round-off errors. The singularity preserving (nonpolynomial) collocation method is known to have only local convergence. To overcome th...
متن کاملcollocation method for fredholm-volterra integral equations with weakly kernels
in this paper it is shown that the use of uniform meshes leads to optimal convergence rates provided that the analytical solutions of a particular class of fredholm-volterra integral equations (fvies) are smooth.
متن کاملHaar Wavelet Method to Solve Volterra Integral Equations with Weakly Singular Kernel by Collocation Method
Volterra integral equations arise in many problems pertaining to mathematical physics like heat conduction problems. Several numerical methods for approximating the solution of Volterra integral equations are known [1-10]. This paper is focused on the solution of Volterra integral equations of the second kind with weakly singular kernel via Haar function by taking advantage of the nice properti...
متن کاملA Nodal Spline Collocation Method for Weakly Singular Volterra Integral Equations
A collocation method based on optimal nodal splines is presented for the numerical solution of linear Volterra integral equations of the second kind with weakly singular kernel. Since the considered spline operator is a bounded projector we can prove that, for sequences of locally uniform meshes, the approximate solution error converges to zero at exactly the same optimal rate as the spline app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 2003
ISSN: 0036-1429,1095-7170
DOI: 10.1137/s0036142901385593